LOS ALAMOS, NEW MEXICO 87544 # OFFICE MEMORANDUM Col to : L. Rosen, MP-DO DATE: December 21, 1970 A.91-011 70-9 FROM : Arvid Lundy, MP-1; Richard Hutson, MP-7 MP-DO SUBJECT: DOSE TO PATIENT DURING HYPOTHETICAL MUONIC X-RAY IN VIVO TISSUE ANALYSIS SYMBOL : MP-7-20 # Patient Dose During Muonic X-Ray Tissue Analysis Calculation is based on a hypothetical use where one irradiates a 1 cm³ volume of tissue located at a depth of 10 cm in soft tissue. (This corresponds to the use of a mono-energetic 44 MeV pencil beam of muons.) It is assumed that the x-ray detector can be located within 20 cm of the stopping region, that the x-rays pass through 10 cm of tissue, and that a close packed array of seven large (100 cc) Ge(Li) detectors is used. (Paralleling seven detectors will decrease energy resolution by a factor of 2.6, but the detector efficiency of 100 cc detectors will be considerably better at the higher energies than the 30 cc detectors which the composite spectra is based on.) ## 1) Number of muons required: Looking at the composite spectra produced by J-11, it appears that at least 10^6 counts in the oxygen photopeak would be desirable $$N = \frac{10^{6} (\text{counts in oxygen photopeak})}{0.68 \begin{pmatrix} K_{\alpha} & \text{oxygen yield per} \\ & \text{tissue captured} \end{pmatrix} \times 0.217 \begin{pmatrix} x-\text{ray transmission} \\ & \text{thru 10 cm tissue} \end{pmatrix} \times$$ $$\frac{\text{Ge(Li) detector}}{\text{0.90 (photopeak eff.} \text{ of 133 keV}} = 2.8 \times 10^{8} \text{ muons.}$$ Required patient irradiation time: COPIED FOR HSPT * Geometric efficiency calculation: G.E. = $$\frac{\Omega}{4\pi} = \frac{\frac{A}{r^2}}{4\pi} = \frac{7 \text{ (detectors)} \times \frac{\pi \times (2.5 \text{ cm}^{\dagger})^2}{(20 \text{ cm})^2}}{4\pi} = 0.027$$ Front entrance radius of presently available 100 cc GeLi detectors. #### 2) Direct Muon Dose: $$D_{m} = \frac{2.8 \times 10^{8} \text{ muons } \times 44.0 \times 10^{6} \frac{\text{eV}}{\text{muon}} \times 1.6 \times 10^{-12} \frac{\text{ergs}}{\text{eV}}}{100 \frac{\text{erg}}{\text{gm rad}} \times 10 \text{ gm**}} = 19.7 \text{ rads}$$ The incoming beam is visualized as a square 1 cm by 1 cm beam penetrating 10 cm into soft, unit density tissue. Because of the higher LET in the muon stopping region the dose is not uniformly distributed. Study of muon range-energy curves shows the dose in the stopping region to be approximately 45 rads relatively to approximately 13.5 rads in the first few centimeters at the entrance region. ### 3) Muon Decay Dose: Estimate that 65% of the muons decay prior to nuclear capture. (This is a function of Z, for Z = 11 the probability of decay is 0.5 and for Z = 8, 0.75.) 2.8 x $$10^8$$ muons x 0.65 (fraction decaying) = 1.8 x 10^8 decay electrons. Assume an average decay electron energy of 25 MeV and an electron LET of 2 MeV/cm. Assume each electron to traverse approximately 0.5 cm in the stopping region. 4) Dose Due to Nuclear Capture and Subsequent Nuclear Decay: Assume 35% of the muons undergo nuclear capture. For C, N, and O the probability of charged particle emission is 0.15 with 50% of the particles being deuterons with estimated average energy of # COPIED FOR HSPT 15 MeV. * For dosimetry purpose assume all the particles to be 15 MeV deuterons. The range of a 15 MeV deuteron in tissue is < 1 cm so essentially all will be stopped in the muon stopping region. \ nuclear capture particle particle fraction/x .15 emission fraction/x 100 erg gm-rad x 1 gm $$\frac{15 \times 10^6 \frac{\text{eV}}{\text{particle}} \times 1.6 \times 10^{-12} \frac{\text{ergs}}{\text{eV}}}{\text{eV}} = 3.5 \text{ rad}$$ 5) Total Dose in the Stopping Region: | | Quality Factor | REMS | |----------------------------------|----------------|------------| | Direct Muon Dose = 45 rads x | 3 | 135 | | Muon Decay Dose = 2.9 rads x | 1 | 2.9 | | Nuclear Emission Dose = 3.5 rads | x 7 | 24.5 | | | | 162.4 REMS | Quality factor assigned per UCRL-19382 based on LET in water. Compare this dose with the dose administered during a thyroid scan with I-131. A typical thyroid scan with I-131 results in a whole thyroid dose of 1.3 rads/µc in standard man with typically 100µc being administered, i.e., 130 REMS. Therefore, it appears that the dose suggested in muonic activation is probably tolerable for many uses although certainly not desirable. It appears that the key to reducing dose is in achieving better geometrical efficiency and developments in Ge(Li) detector technology may make this feasible. If one considers looking at calcium in bone the situation would look much better because the calcium concentration in bone is 10 times that in "standard man." One might also be able to use a large NaI(T) detector with greatly increased detector efficiency. COPIED FOR RLH for hundy RLH Richard Hutson, MP-7 fg Wagner, Principles of Nuclear Medicine, Philadelphia '68, Pg 774. Silver, Nucleonics, August '65. ^{*} This data from Vaisenberg, et al, JETP 1, 467. ce: L. Agnew, MP-7 A. Lundy, MP-1 MP-1 (2) R. Hutson, MP-7 1:P-00133258,0037) The giving number of counts in photopeaks from muonic activation of "Standard Man" using 30 cc GeLi detector and applying corrections for detector efficiency vs energy and soft-tissue absorption path of 10 cm. (Normalized to 10,000 counts in Oxygen K_{α} photopeak.) | Element and | K-ray Line | Energy (keV) | Number of Count | |-------------|--------------------------------|--------------|-----------------| | Oxygen | L _a | 24.0 | 2,295. | | Carbon | κ _α ' | 75.5 | 6,280. | | Phosphorus | I _{ta} | 88.0 | 193. | | Sulphur | $\mathbf{L}_{\mathbf{\alpha}}$ | 100. | 32.5 | | Nitrogen | K _a | 102. | 549. | | Chlorine | La | 113. | 16.9 | | Oxygen | Ka | 133. | 10,000. | | Potassium | La | 140. | 23.9 | | Calcium | La | 158. | 150. | | Fluorine | Kα | 168. | .421 | | Sodium | Kα | 250. | 10.7 | | Iron | La | 264 | .382 | | Magnesium | Kα | 296 | 2.04 | | Zinc | La | 356. | .152 | | Silicon | Kα | 400. | 1.17 | | Silicon | KB | 450. | .105 | | Phosphorus | K a | 458. | 42.4 | | Silicon | Κυ | 460. | .157 | | Sulphur | Kα | 522. | 6.59 | | Phosphorus | K _B | 523. | 3.56 | | Phosphorus | ĸυ | 548. | 5.24 | | Chlorine | Kα | 583. | 3.49 | | Sulphur | Kβ | 618. | .601 | | Sulphur | κυ | 666. | .869 | | Chlorine | КB | 683. | .295 | | Potassium | Kα | 713. | 5.13 | | Chlorine | κυ | 738. | •402 | | Calcium | Kα | 786. | 33.0 | | Potassium | Kβ | 851. | .271 | | Potassium | κυ | 936. | .469 | | Calcium | Kβ | 946. | 2.25 | | Calcium | κυ | 1034. | 3.20 | | Iron | Κα | 1262. | .0690 | | Zinc | K | 1615. | .0320 | | Iron | κ _ι , | 1706. | 01.44 | COPIED FOR HSPT 00133258.004